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Abstract
Our understanding of the microbial involvement in 
inflammatory bowel disease (IBD) pathogenesis has 
increased exponentially over the past decade. The de-
velopment of newer molecular tools for the global as-
sessment of the gut microbiome and the identification 
of nucleotide-binding oligomerization domain-contain-
ing protein 2 in 2001 and other susceptibility genes for 
Crohn’s disease in particular has led to better under-
standing of the aetiopathogenesis of IBD. The microbial 
studies have elaborated the normal composition of the 
gut microbiome and its perturbations in the setting of 
IBD. This altered microbiome or “dysbiosis” is a key 
player in the protracted course of inflammation in IBD. 
Numerous genome-wide association studies have iden-
tified further genes involved in gastrointestinal innate 
immunity (including polymorphisms in genes involved 
in autophagy: ATG16L1  and IGRM), which have helped 
elucidate the relationship of the local innate immunity 
with the adjacent luminal bacteria. These developments 
have also spurred the search for specific pathogens 
which may have a role in the metamorphosis of the gut 
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microbiome from a symbiotic entity to a putative patho-
genic one. Here we review advances in our understand-
ing of microbial involvement in IBD pathogenesis over 
the past 10 years and offer insight into how this will 
shape our therapeutic management of the disease in 
the coming years.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: In the last decade there have been enormous 
strides in our understanding of the role of gut micro-
biota in the aetiopathogenesis of inflammatory bowel 
disease (IBD). Newer molecular and genetic diagnostic 
tools have elucidated distinct changes in the gut mi-
crobiota in IBD patients and clarified the deficiencies 
of innate immunity. A link between environmental fac-
tors like diet, host immunity and the gut microbiota 
has been established. This review aims to enumerate 
these diverse strands of converging research in the last 
decade to outline the exciting prospects of possible 
personalized therapeutic interventions for patients with 
IBD in the coming years.
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INTRODUCTION
Inflammatory bowel disease (IBD) comprises two distinct 



conditions, ulcerative colitis (UC) and Crohn’s disease 
(CD) that are characterized by chronic relapsing inflam-
mation of  the gut in genetically susceptible individuals 
exposed to defined environmental risk factors[1,2]. IBD 
was historically considered to be a “Western” disease but 
in the last decade there has been a definite increase in its 
incidence and prevalence suggesting that it is progressive-
ly emerging as a global epidemic[3]. In the high prevalence 
regions the incidence of  IBD has continued to rise in the 
past decade[4,5].

There has been a parallel rise in our understanding of  
the critical role of  the gut microbiota in the aetiopatho-
genesis of  IBD. This is aptly exemplified by entering the 
key words, “microbiota” or “microflora” and “inflam-
matory bowel disease” into the PubMed database. On 
restricting the search to the last 10 years, over 800 articles 
published on this subject can be retrieved as opposed to 
100 articles in the decade preceding it. This radical ex-
plosion of  interest has been primarily due to the advent 
of  culture-independent techniques like next generation 
sequencing and metagenomics which has enabled the 
global assessment of  the gut microbiota much more ac-
curately and in a vastly more sophisticated manner[6,7]. 
The largest and perhaps the most ambitious initiative that 
has emerged in the last decade is the NIH sponsored Hu-
man Microbiome Project with a total budget of  $115 mil-
lion to study the changes of  the human microbiome in 
health and disease[8]. It has recently led to the publication 
of  5177 microbial taxonomic profiles from a population 
of  242 healthy adults sampled at 15 or 18 body sites up 
to three times, with over 3.5 terabases of  metagenomic 
sequence so far, which will serve as a comprehensive 
framework for future research in this field[9]. 

This expansion of  knowledge in the last decade has 
also shifted the search from external environmental trig-
gers to a trigger within the complex luminal microbiome 
or the so called “in-vironment” that we harvest within 
ourselves[10-12]. Prior to these radical developments re-
search had focussed on unearthing a pathogen amidst the 
vast plethora of  microbes in the gut lumen, which could 
be held responsible for initiating the inflammatory cas-
cade that is typical of  IBD[13]. This endeavour was akin to 
searching for the veritable “needle in the haystack”. The 
findings in the last decade has turned this whole concept 
on its head by revealing that the gut microbiome as a 
whole is altered in IBD, suggesting that perhaps the entire 
“haystack” is faulty. This concept of  an altered gut micro-
biome or dysbiosis is possibly the most significant devel-
opment in the field of  IBD research in the past decade.

The other major shift in our knowledge of  the aetio-
pathogenesis of  inflammatory bowel disease has been 
from the host perspective. The dogma that CD and UC 
are typical autoimmune disorders was based on the char-
acteristic histological appearance of  these conditions and 
the response to immune-modulator drugs but the veil has 
lifted from this deep-embedded misconception[14,15]. Over 
the past decade, genome wide association studies and 
newer genetic technologies have elucidated distinct genet-

ic defects in IBD patients. This has particular relevance 
with respect to host-microbial interaction at the luminal 
surface in the gut. A similar analysis on the PubMed da-
tabase with the search items “genetics” and “inflamma-
tory bowel disease” leads to a staggering yield of  more 
than 5600 publications in the last decade as opposed to 
2000 articles in the decade prior. It must be said that the 
avenue of  research in this field was first opened up in 
2001 when the first association of  the nucleotide-binding 
oligomerization domain-containing protein 2 (NOD-2) 
gene mutation and susceptibility to Crohn’s disease was 
documented[16,17]. This has resulted in a drastic paradigm 
shift wherein IBD is no longer considered an autoim-
mune disease but may be an immunodeficient condition 
instead[15]. This putative genetic susceptibility leads to a 
complex interaction between the diverse gut microbiome 
and the local innate immune system and forms the cur-
rent basis for the aetiopathogenesis of  IBD (Figure 1). 

DYSBIOSIS
The normal gut microbiome comprises 100 trillion 
diverse microbes, mostly bacteria, encompassing over 
1100 prevalent species, with at least 160 species in each 
individual[18]. An exhaustive analysis of  normal global gut 
bacterial communities suggests the possible existence of  
distinct enterotypes (Bacteroides, Prevotella or Ruminococcus) 
which are predominantly driven by dietary intake but 
independent of  age or BMI[19,20]. Further analysis sug-
gests that the Bacteroides enterotype is associated with a 
“western” protein rich diet as opposed to the Prevotella 
enterotype which was associated with a carbohydrate rich 
diet[21]. It remains to be seen whether this western entero-
type turns out to be a distinct risk factor for developing 
IBD.

Dysbiosis or a definitive change of  the normal gut 
microbiome with a breakdown of  host- microbial mutual-
ism is probably the defining event in the development of  
IBD. The shift from predominant “symbiont” microbes 
to potential harmful “pathobiont” microbes has now 
been well documented[22]. Some of  these changes in the 
gut microbiome have been detected in the common sub-
set of  IBD patients but some have been clearly delineat-
ed either in CD or in UC patients. The most well defined 
change that has been noted in patients with IBD is the 
reduced abundance of  the phyla Firmicutes[23-25]. Amongst 
the Firmicutes, the reduced presence of  Faecalibacterium 
prausnitzii has been well documented in patients with CD 
as opposed to controls[23,26-30]. This has been countered in 
a paediatric cohort of  patients with CD where there were 
increased levels of  Faecalibacterium prausnitzii suggesting a 
more dynamic role for this bacterium with a putative pro-
tective effect at the point of  onset of  IBD[31]. In addition, 
there was a definite decrease in diversity of  Firmicutes, 
with fewer of  its constituent species detected in patients 
with IBD[23,32,33]. Unlike Firmicutes, there have been re-
ports of  increased number of  bacteria from the phylum 
Bacteroidetes in patients with IBD[34-36]. Paradoxically, there 
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have been some studies which have shown reduction in 
these bacterial species as well[23]. There is a suggestion 
that there may be spatial reorganization of  the Bacteroides 
species in patients with IBD, with Bacteroides fragilis being 
responsible for a greater proportion of  the biofilm mass 
in patients with IBD compared to controls, suggesting 
increased adherence[37]. Bacteria belonging to these two 
phyla make up for 90% of  the phylogenetic categories 
in the normal microbiome and it is interesting to see the 
disparate ways in which they are altered in IBD.

Most of  the known pathogenic bacteria in humans 
belong to the phylum Proteobacteria, which have been in-
creasingly found to have a key role in IBD[38]. Microbial 
diversity analysis has shown a shift towards an increase 
in bacterial species belonging to this phylum, suggesting 
an aggressor role in the initiation of  chronic inflamma-
tion in patients with IBD[39-42]. More specifically, increased 
concentrations of  Escherichia coli including pathogenic 
variants have been documented in ileal CD[28,43]. 

This interesting shift within the gut microbiome with 
a decrease in obligate anaerobes of  the phylum Firmicutes 
and an increase in facultative anaerobes of  Proteobacteria 
has given rise to a putative “oxygen” hypothesis wherein 
disruption in anaerobiosis points to a role for oxygen in 
intestinal dysbiosis[44]. Similar functional disruptions as-
sociated with changes of  the gut microbiome in patients 
with IBD may have more long reaching effects. Metage-
nomic analysis has revealed that the altered microbiome 
in IBD has 25% fewer genes and metaproteomic studies 
have shown a depletion of  proteins and functional path-
ways[18,45]. The ileal CD patients were found to have altera-
tions in bacterial carbohydrate metabolism, bacterial-host 

interactions, as well as human host-secreted enzymes[45]. 
Elucidation of  the functional impact of  the changes seen 
as a result of  dysbiosis will help design remedial measures 
that will help in the treatment of  IBD patients. 

The immediate question which follows is how the 
host responds to dysbiosis. Host genetics factors, spe-
cifically those pertaining to the innate immunity arm, is 
expected to play a role in the aetiopathogenesis of  IBD. 
The “chicken and the egg” question is what comes first. 
Are the changes in the gut microbiome a result of  an ab-
errant immune response in a genetically susceptible indi-
vidual or does the abnormality in the gut microbiota lead 
to an aberrant immune response in such an individual? 
Twin studies have shown that disease phenotype rather 
than host genotype plays a greater role in determining 
changes in gut microbiota[46]. However, studying the mi-
crobiota in subsets of  patients with and without NOD2 
and autophagy related protein 16-like 1 (ATG16L1) risk 
alleles showed that the affected genotypes were signifi-
cantly associated with microbial compositional change 
but disease phenotype played a role as well[47]. The con-
founding factor is that these two alleles are associated 
with ileal CD and not colonic CD. It makes it difficult to 
attribute these genetic defects as a cause of  dysbiosis but 
highlights the intricate role of  innate immunity in IBD.

INNATE IMMUNITY AND IBD
The gastrointestinal microbiota is a major source of  im-
mune stimulation. The colonic epithelium lies in close 
proximity to a high density of  diverse microbes leading 
to a continuous network of  communication between 
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Figure 1  The Venn diagram depicts the overlapping role of the gut microbiome, host and environmental factors in the aetiopathogenesis of inflammatory 
bowel disease. Dysbiotic changes in the gut microbiome may be influenced by diet and other environmental factors and predispose to inflammatory bowel disease 
(IBD). A small proportion of IBD patients have demonstrable genetic susceptibility factors. NOD2: Nucleotide-binding oligomerization domain-containing protein 2; 
ATG16L1: Autophagy related protein 16-like 1; IL-23R: Interleukin 23 receptor.
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both UC and CD, whereas the levels of  TLR2 and TLR5 
remain unchanged[56,59]. Altered TLR2 and TLR4 expres-
sion has been documented in the intestinal macrophages 
compared to peripheral monocytes, and a higher percent-
age of  intestinal dendritic cells (DCs) have been shown 
to express TLR2 and TLR4 in IBD compared to control 
subjects[59]. Intestinal macrophage signalling through 
PRRs has also been shown to be affected by increased 
expression of  suppressor of  cytokine signalling 1 and 
sterile and Armadillo motif-containing protein[60,61]. Dys-
regulation of  β-catenin and phosphotidylinositol-3-
kinase pathways are also involved with alterations in these 
pathways involved in colitis susceptibility[62,63]. In IBD 
patients increased cytokine production is seen by lamina 
propria DCs and macrophages, consistent with dysregu-
lated tolerance[64-66]. These changes can explain some of  
the abnormal response to the resident gut microbiota. 
However, it is difficult to elucidate whether the change in 
TLR expression initiates disease or is an epiphenomenon 
resulting from pro-inflammatory cytokine release. In 
many cases absence of  epithelial cell-derived antimicro-
bial pathways increases susceptibility to intestinal inflam-
mation, with IBD patients expressing lower levels of  
α-defensin compared to healthy individuals[67,68].

Animal models had played a significant role in driving 
forward our understanding of  IBD pathogenesis, espe-
cially murine colitis models. TLR4 and MyD88 knockout 
mice have been shown to demonstrate distinctly less 
pathology following chemical induction of  colitis with 
dextran-sodium sulphate although bacterial transloca-
tion to mesenteric lymph nodes was more commonly 
detected[69]. Impairment of  TLR4 and TLR5 function has 
been shown to facilitate bacterial invasion and persistence 
(TLR4) and impact on intestinal homeostasis; develop-
ment of  metabolic syndrome (TLR5)[57,58].

Alterations in NOD2 function due to genetic poly-
morphisms have demonstrated an inability to respond to 
bacterial muramyl dipeptide (MDP) leading to ineffective 
downstream signalling of  NF-κB[70]. NOD2, is expressed 
on several different cell types including myeloid-derived, 
epithelial and endothelial cells. As with impairment of  
TLR function, NOD2 deficiency increases translocation 
of  enteric bacteria to the lamina propria, with alterations 
in cytokine expression following exposure of  peripheral 
blood mononuclear cells to MDP also reported potential-
ly explaining the alterations in cytokine profiles typically 
seen in CD[71,72]. Interestingly, NOD2 has more recently 
been shown to respond to viruses[73]. With increasing 
interest in non-bacterial microbes in IBD pathogenesis, 
namely viruses and fungi, this may prove to be an in-
creasing area of  consideration. A decrease in the protec-
tive, anti-inflammatory Th-2 cytokine IL-10 has been 
documented in NOD2 mutants further adding to our un-
derstanding of  the functional abnormalities characteristic 
of  CD[74].

Counter-intuitively, NOD2 can also contribute to 
down-regulation of  inflammatory responses with chronic 
stimulation of  NOD2 acting to tolerise cells against bac-

host cells and microbes. This continual communication 
is essential for the maintenance of  normal homeostasis 
though contribution to processes including supply of  
nutrients, xenobiotic metabolism and protection from 
pathogenic microorganisms, can have deleterious effects 
and contribute to intestinal inflammation[48,49]. In patients 
with IBD this delicate balance is disturbed as a result of  
host immune defects in microbial recognition or han-
dling/clearance strategies[50]. Pattern recognition recep-
tors (PRRs) are essential in distinguishing “friend from 
foe” in this very complex interaction and hold the key to 
understanding how genetic factors lead to an abnormal 
immune environment wherein normal commensal organ-
isms can lead to pathological chronic inflammation. Ten 
years ago toll-like receptors (TLRs) and NOD2 were 
known to be involved in IBD pathogenesis although our 
understanding of  their location, function and involve-
ment was still very rudimentary. Evidence from IBD 
genetic studies had demonstrated that several innate im-
mune genes had functionally relevant polymorphisms. Of  
those studied NOD2 genetic variants confer the greatest 
risk.

A decade ago the novel association between the re-
cently characterised TLR4 Asp299Gly was described for 
both CD and UC[51]. This finding supported previous 
evidence of  PRR genetic influence in IBD susceptibility 
which had shown that polymorphisms in NOD2 (Arg-
702Trp, Gly908Arg, and leu1007fsinsC) and the CD14-
159C/T promoter polymorphism were associated with 
CD[16,17]. Since then, additional polymorphisms in TLRs 
have been identified including TLR1 R80T and TLR2 
R753G which have been associated with pancolitis in UC 
patients[52]. The TLR9-1237T/C promoter polymorphism 
(TLR9-1237), which is associated with increased nuclear 
factor kappa B (NF-κB) binding affinity, has also been 
associated with CD[53,54].

The normal colonic epithelium constitutively ex-
presses a variety of  PRRs although expression levels are 
generally low with many receptors located basolaterally 
thus preventing interaction with luminal antigens[55]. Nev-
ertheless, intestinal epithelial cells are responsive to TLR 
ligands and recognise/respond to commensal bacteria 
secreting antimicrobial proteins and cytokines which 
facilitate intercellular interactions[48]. Primary human 
intestinal epithelial cells express constitutive TLR3 and 
TLR5 and low levels of  TLR2 and TLR4[56]. TLR2, 4 and 
5 are expressed on the cell surface and recognise extracel-
lular microbes. TLR3 detects viral particles and is located 
intracellularly on early endosomal vesicles. The critical 
role of  TLR4 as a first line of  defence against potential 
bacterial pathogens is now beyond doubt. Impairment of  
TLR4 function permits bacterial invasion and persistence, 
and leads to the characteristic inflammation of  IBD. The 
importance of  TLR5 in intestinal homeostasis has also 
been effectively demonstrated using microbiota transfer 
from knockout mice[57,58].

Distinct changes in TLR expression have been docu-
mented in IBD. TLR4 is found to be up regulated in 
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terial stimulation and ultimately down regulating other 
PRRs[75-77]. Hence, in CD patients with dysfunctional 
NOD2 this restraint is removed and the inflammatory 
response from other PRRs increases. 

NOD2 is also implicated in mechanisms of  microbial 
killing. Autophagy, an important mechanism of  micro-
bial cell clearance, is regulated through PRRs[78]. NOD2 
interacts with ATG16L1[78,79]. Therefore dysregulation of  
NOD2 impacts not only on microbial recognition but 
also handling. Genetic variants in ATG16L1 and also a 
second autophagy gene, immunity-related GTPase family 
M have been associated with CD[80,81].

ROLE OF INDIVIDUAL PATHOGENS IN 
IBD
The rapid development of  molecular techniques has also 
kindled hopes in the search for specific pathogenic agents 
initiating the inflammatory process of  IBD. The patho-
physiology of  IBD does suggest that either primary or 
secondary pathogens play an important role in the cycle 
of  inflammation. Many organisms have been proposed 
but those deemed to have been of  the most interest over 
the last ten years are discussed below (Table 1).

Mycobacterium avium subspecies paratuberculosis 
Mycobacterial infection has been postulated in the aetiology 
of  Crohn’s disease since its first description in 1913. The 
association stems from the observed similarity between 
Crohn’s disease and the bovine condition Johne’s disease, 
a condition caused by Mycobacterium avium paratuberculosis 
(MAP) infection leading to granulomatous enterocolitis. 
There have been vast numbers of  studies in this area but 
the role of  MAP remains uncertain[50,82,83]. 

MAP can be widely isolated from meat, dairy prod-
ucts and water, indicating sources of  infection and sup-
porting its role[82,83]. However, a large study found a lack 
of  epidemiological support for environmental expo-
sure[84]. Over the last decade research into the prevalence 
of  MAP in IBD patients has been inconclusive. A large 
number of  researchers have successfully shown a higher 
prevalence of  MAP in Crohn’s patients compared to 
controls but, it seems for each of  these there has been an 
equivalent study yielding no association[85-97]. 

In support of  its role the ability of  MAP to invade 
gut epithelial cells, inducing tissue damage and inflam-
mation, has been shown[98]. A dominant T-cell response 
to MAP has also been seen in CD patients and macro-
phages infected with viable MAP are associated with high 
production of  tumour necrosis factor-alpha (TNF-α), a 
marker for CD[95,99,100]. Using mouse models, MAP has 
been found to induce full-thickness necrotizing colitis af-
ter subcutaneous and transluminal injection[101].

The discovered association between CD and the au-
tophagy gene ATG16L1 lends further credence to the 
theory as it is known that autophagy is essential for inhi-
bition of  mycobacterium tuberculosis in infected mac-
rophages[102,103]. Defective innate immune killing mecha-

nisms in patients with NOD2 polymorphisms at first also 
seem to support the idea, and indeed it has been found 
that monocytes heterozygous for a NOD2 polymorphism 
are more permissive to the growth of  MAP[104]. Beyond 
contemplation, however, evidence for this hypothesis is 
limited. MAP has been detected most commonly in co-
lonic disease; this is in direct contrast with the prevalence 
of  NOD2 mutation in ileal disease[105,106]. In fact a study 
directly looking at the relationship between NOD-2 and 
MAP serology found no association[107]. Combining this 
with the response of  CD to immunosuppressant and an-
ti-TNF therapy, known to cause MAP proliferation and a 
lack of  success of  anti-mycobacterial therapy, the role of  
MAP is clearly still in doubt[108].

Helicobacter
Helicobacters, as human gastrointestinal pathogens, have 
assumed great research interest since the discovery by 
Robin Warren and Barry Marshall of  Helicobacter pylori as 
the infectious agent in gastric and duodenal ulceration. 
Also, similar to MAP, one of  the main prompters of  re-
search into the role of  Helicobacter in IBD has been their 
propensity to cause colitis in animal models like Cotton-
top tamarin monkeys (Saguinus oedipus). Despite this, there 
has been a lack of  success in the last decade establishing 
presence of  Helicobacter in IBD patients. The findings of  
studies looking into the molecular evidence of  Helicobacter 
presence are varied and studies aimed at culturing viable 
Helicobacter from IBD tissue have failed[109-121]. Interest-
ingly the only seemingly universally accepted action of  
Helicobacter in IBD is the apparent protective effect of  
Helicobacter pylori which has convincingly been found to 
be negatively correlated with IBD[113,118-122]. This may con-
form to the “hygiene hypothesis” for the development of  
IBD[123].

The evidence for an association is much stronger with 
enterohepatic Helicobacter species. Non-pylori Helicobacter 
organisms have been shown to induce colitis in a number 
of  rodent models; Helicobacter hepaticus and Helicobacter 
bilis (H. bilis) most prominently but, also Helicobacter tro-
gontum, Helicobacter rodentium and Helicobacter typhlonius with 
cytokine patterns which were very similar to that of  hu-
man IBD[124-128]. When studying the response to H. bilis, 
Jergens et al[126] showed that there was an IgG mediated 
response to the microbiota prior to the development 
of  colitis, suggesting the ability of  H. bilis to induce the 
hosts immune response to commensal bacteria, leading 
to the observed immune-mediated intestinal inflamma-
tion of  IBD. In human subjects, enterohepatic Helicobacter 
species prevalence was significantly higher in colonic bi-
opsy samples from patients with UC group compared to 
control subjects[118].

Campylobacter
Campylobacter is a relatively new and important player in 
IBD. Unlike the other IBD suspects, Campylobacter does 
not have a suitable animal disease model; instead interest 
stems from the recognition of  Campylobacter jejuni (C. je-
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Table 1  Evidence for the role of specific major pathogens in the aetiopathogenesis of inflammatory bowel disease in the last decade  
n  (%)

Year Pathogen Disease Sample type Detection rate Reference

CD UC Control
2003 MAP CD Tissue  34/37 (92)   9/34 (26) [85]
2003 MAP CD and UC Tissue  0/24 (0) 1/28 (4)   6/19 (32) [94]
2003 Helicobacter CD and UC Tissue    0/9 (0) 0/11 (0) 0/10 (0) [109]
2004 MAP CD and UC Blood 107/283 (37.8)  50/144 (34.7)     135/402 (33.6) [92]
2004 MAP CD and UC Blood  13/28 (46)     4/9 (45)   3/15 (20) [86]
2004 H. pylori UC Tissue    8/42 (19)    7/74 (9.5) [110]
2004 Helicobacter CD and UC Tissue  1/25 (4)      5/33 (15.2) 0/29 (0) [111]
2004 Helicobacter CD and UC Tissue  0/30 (0) 0/26 (0) 0/25 (0) [112]
2004 EHH CD and UC Tissue    3/25 (12)   3/18 (17) 1/23 (4) [113]

H. pullorum  2/25 (8) 0/18 (0) 1/23 (4)
H. fennelliae  1/25 (4)   3/18 (17) 0/23 (0)
H. pylori    8/25 (32)   5/18 (28) 14/23 (61)

2004 Helicobacter CD, UC and IC Tissue  0/11 (0) 1/20 (5) 0/37 (0) [114]
2004 E. coli CD and UC Tissue  11/14 (79)   8/21 (38) 10/24 (42) [157]

AIEC  10/14 (71) 10/21 (48)   7/24 (29)
2004 AIEC CD Tissue       7/63 (11.1)    1/16 (6.3) [155]
2004 E. coli CD Tissue  12/15 (80)   1/10 (10) [159]
2006 E. coli CD and UC Tissue    9/12 (75)       7/7 (100)     2/8 (25) [160]
2007 AIEC CD and UC Tissue       8/13 (61.5)    11/19 (57.9)      4/15 (26.7) [161]
2008 Helicobacter CD Faeces  17/29 (59) 1/11 (9) [115]

EHH  11/29 (38) 1/11 (9)
H. pylori    6/29 (21) 0/11 (0)
H. trogontum    4/29 (14) 1/11 (9)
H. canis    5/29 (17) 0/11 (0)
H. bilis    4/29 (14) 0/11 (0)
H. cinaedi  1/29 (3) 0/11 (0)

2009 AIEC CD Tissue     14/27 (51.9)      4/24 (16.7) [156]
2009 Helicobacter CD Tissue     32/73 (43.8)    43/92 (46.7) [116]

EHH     18/73 (24.7)    16/92 (17.4)
H. pylori     29/73 (39.7)    39/92 (42.4)
H. pullorum    8/73 (11)    6/92 (6.5)
H. canndensis     10/73 (13.7)    10/92 (10.9)

2009 Campylobacter CD Tissue  27/33 (82) 12/52 (23) [131]
C. concisus  17/33 (51) 1/52 (2)
C. showae  3/33 (9) 0/52 (0)
C. hominis  2/33 (6) 2/52 (4)
C. gracilis  2/33 (6) 0/52 (0)
C. rectus  1/33 (3) 2/52 (4)
C. jejuni  1/33 (3) 3/52 (6)
C. ureolyticus  1/33 (3) 2/52 (4)

2010 Helicobacter CD Tissue     32/77 (41.6)  23/102 (22.5) [117]
EHH     18/77 (23.4)  12/102 (11.8)
H. pylori     14/77 (18.2)  11/102 (10.8)
H. bilis     1/77 (1.3)  1/102 (1.0)
H. canis     2/77 (2.6)  0/102 (0.0)
H. hepaticus     2/77 (2.6)  2/102 (2.0)
H. trogontum     5/77 (6.5)  4/102 (3.9)

2010 Campylobacter CD Faeces  39/54 (72) 10/33 (10) [132]
C. concisus  35/54 (65) 11/33 (33)

2010 C. concisus CD and UC Saliva    13/13 (100)       5/5 (100) 57/59 (97) [136]
2011 Helicobacter UC Tissue 32/77 (42) 11/59 (19) [118]

EHH 30/77 (39) 2/59 (3)
H. pylori 2/77 (3)   9/59 (15)

2011 C. concisus CD, UC and IC Tissue       8/12 (66.7)        3/8 (37.5)    11/26 (42.3) [133]
2011 Campylobacter UC Tissue    51/69 (73.9)    15/65 (23.1) [135]

C. concisus    23/69 (33.3)      7/65 (10.8)
C. ureolyticus    15/69 (21.7)      2/65 (10.8)
C. hominis    14/69 (20.3)    5/65 (7.7)
C. curvus    3/69 (4.3)    4/65 (6.2)
C. showae    4/69 (5.8) 0/65 (0)
C. jejuni    2/69 (2.9) 0/65 (0)
C. gracilis    1/69 (1.4) 0/65 (0)
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juni) as the leading cause of  gastroenteritis worldwide[129].
The role of  C. jejuni in human disease has been long 

recognised and its prevalence in IBD investigated[130]. The 
main advance in the last decade has been the recognition 
of  the importance of  non-jejuni Campylobacter as human 
pathogens. Zhang et al[131] found a higher prevalence of  
Campylobacter concisus (C. concisus) DNA and IgG levels 
in newly diagnosed paediatric patients with Crohn’s dis-
ease, even managing to culture C. concisus from a biopsy 
sample, indicating viability. Another study using faecal 
samples from newly diagnosed CD patients also found a 
significant association with C. concisus, 35 of  54 CD pa-
tients testing positive and only 11 of  33 healthy controls. 
This study also found that C. hominis was present in 13% 
of  Crohn’s samples, Campylobacter ureolyticus in 9%, Cam-
pylobacter showae (C. showae) in 4%, Campylobacter gracilis (C. 
gracilis) in 2% and C. rectus in 2%. Interestingly C. gracilis, 
Campylobacter rectus and C. showae were only detected in 
patient samples[132]. Similar results have been obtained in 
a number of  studies in adult patients[119,133-136]. Mahendran 
et al[134] also showed an increased prevalence in UC, a 
finding supported by Mukhopadhya et al[135] who found 
C. concisus DNA in biopsy samples in 23/69 (33.3%) of  
UC patients compared to 7/65 (10.8%) of  controls. This 
study also found C. ureolyticus to be in higher prevalence 
in UC patients. The most recent study found that al-
though Campylobacter appear to be surprisingly common, 
with positive PCR in 33/44 IBD patients and 32/42 
controls, there was no association with IBD[119]. A domi-
nant serological antibody response to C. concisus has been 
documented in IBD patients indicating the prevalence of  
infection[137,138]. Specifically CD patients have been shown 
to recognise flagellin B, ATP synthase F α subunit and 
outer membrane protein 18 of  C. concisus[137]. 

The origins of  Campylobacter have led to a few re-
searchers looking into the risks of  developing IBD after 
acute gastroenteritis. A long term study published in 
2009 documents the risk of  developing IBD after acute 

infection with Campylobacter (C. jejuni) or Salmonella[139]. 
The findings indicated a significant increased risk in the 
exposed group for subsequently developing IBD, which 
has been supported by similar studies[140-142].

The pathogenesis of  C. jejuni had been fairly well es-
tablished prior to the last decade. C. jejuni has been used 
to induce colitis in rodent models and previous exposure 
correlated with disease severity[143]. The ability of  C. jejuni 
to attach and invade the gut epithelium is well document-
ed[144]. The newest discovery has been that C. jejuni can 
promote translocation of  commensal luminal bacteria. 
This is a natural process thought to be essential for im-
munological tolerance and mucosal surveillance in the GI 
tract. Up regulation could affect the normal mucosal re-
sponse to the intestinal microbiota leading to the chronic 
immune-mediated intestinal inflammation of  IBD[145] 

A number of  studies have demonstrated the ability of  
C. concisus to colonise and adhere to intestinal epithelial 
cells, causing cell damage and microvillus degradation[146]. 
Man et al[146] comprehensively described the method of  C. 
concisus attachment and invasion. They showed C. concisus 
to attach to the intracellular junction, disrupting bar-
rier function - increasing permeability by causing a loss 
of  tight junction proteins and decreasing transepithelial 
electrical resistance and to invade by a process mediated 
by polar flagellum[147]. Other non-jejuni Campylobacters have 
also been shown to be invasive and induce pro-inflamma-
tory cytokines as well as producing a number of  virulence 
factors such as haemolysins, cytolethal distending toxin 
and zonula occludens toxin[129,147-151]. These mechanisms 
could have an important bearing when one considers a 
causative role for this group of  pathogens in IBD.

Adherent and invasive Escherichia coli 
A specific pathogenetic group of  Escherichia coli (E. coli), 
adherent-invasive E. coli (AIEC) have recently been ex-
tensively implicated in human IBD and are currently one 
of  the most exciting players in the pathogen story. This 

2011 Campylobacter CD and UC Tissue  12/15 (80) 11/13 (85) 18/33 (48) [134]
C. concisus  10/15 (67)   9/13 (69) 12/33 (36)
C. showae  1/15 (7)   2/13 (15) 2/33 (6)
C. hominis  1/15 (7) 1/13 (8) 3/33 (9)
C. ureolyticus    2/15 (13) 1/13 (8) 2/33 (6)
C. gracilis  1/15 (7) 1/13 (8) 0/33 (0)
C. rectus  0/15 (0) 1/13 (8) 0/33 (0)
C. jejuni  1/15 (7) 0/13 (0) 0/33 (0)

2012 AIEC CD and UC Tissue     1/17 (5.9)   1/10 (10) 0/23 (0) [167]
2013 Helicobacter CD and UC Tissue       4/29 (13.8)    1/13 (7.7)      5/42 (11.9) [119]

H. brantae     1/59 (3.4) 0/13 (0) 0/42 (0)
H. hepaticus     1/59 (3.4) 0/13 (0) 0/42 (0)

2013 Campylobacter CD and UC Tissue     22/29 (75.9)   9/13 (69)    32/42 (76.2) [119]
C. concisus     13/29 (44.8)      4/13 (30.8)    16/42 (38.1)
C. curvus     2/29 (6.9) 0/13 (0)    3/42 (7.1)
C. gracilis     1/29 (3.4) 0/13 (0)    2/42 (4.8)
C. hominis       9/29 (31.0)      5/13 (38.5)    14/42 (33.3)
C. rectus  0/29 (0) 0/13 (0)    4/42 (9.5)
C. showae       9/29 (31.0)      5/13 (38.5)      9/42 (21.4)
C. ureolyticus  0/29 (0) 0/13 (0)    2/42 (4.8)

CD: Crohn’s disease; UC: Ulcerative colitis; IC: Indeterminate colitis; IBD: Inflammatory bowel disease; MAP: Mycobacterium avium subspecies paratuberculo-
sis; EHH: Enterohepatic Helicobacter; E. coli: Escherichia coli; AIEC: Adherent-invasive E. coli.
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group are characterised by their ability to adhere and 
invade epithelial cells using actin microfilaments and mi-
crotubule recruitment. AIEC strains have been shown to 
be the cause of  granulomatous colitis in boxer dogs and 
to induce granulomas, similar to early epithelioid granu-
lomas, in vitro[152-154]. Similarly to the previously discussed 
bacteria, they have been documented to induce colitis in 
infected animals.

There is a growing body of  evidence supporting 
the prevalence of  AIEC in human disease. A number 
of  studies initially showed a disproportionate increase 
in Enterobacteria as a whole[36,47]. When looking at AIEC 
organisms specifically, Darfeuille-Michaud et al[154] found 
them to be more prevalent in ileal Crohn’s lesion tissue 
(36.4%) then controls (6.2%)[155]. This study also found 
that AIEC seemed to be rarely found in colonic tissue 
with 3.7% detected from Crohn’s patients and 1.9% from 
controls, and none in UC specimens. This suggests a 
specific association of  AIEC with ileal Crohn’s. The find-
ings of  this initial study have been backed up by many 
researchers obtaining similar results[28,156-162]. Additionally, 
antibodies to the E. coli membrane protein C and the CD 
associated bacterial sequence I2 have been shown to not 
only be more prevalent in CD but also to be associated 
with more severe disease, with small bowel involvement, 
faster disease progression and increased need for surgical 
intervention[158,163].

The mechanism by which AIEC might induce colitis 
has been fairly well established towards the end of  the 
decade. AIEC have type one pili and flagella that can 
bind to host adhesion receptor carcinoembryonic anti-
gen-related cell adhesion molecule 6 (CEACAM6)[164,165]. 
CEACAM6 has been shown to be more highly expressed 
in ileal CD tissue, to be increased after-γ or TNF-α stim-
ulation and to be upregulated by AIEC itself[164,165]. AIEC 
have also been shown to possess long polar fimbriae 
and so can cross the mucosal barrier to access lymphoid 
cells[166]. They can then invade macrophages without in-
ducing cell death, allowing them to replicate and continu-
ously activate immune cells, triggering TNF-alpha release 
and granuloma formation, which are hallmarks of  Crohn’
s disease. In fact the use of  TNF-alpha antibodies has 
been shown to decrease the number of  intramacrophagic 
bacteria, relating this to the success of  anti-TNF therapy 
and further supporting the role of  AIEC[167].

Other putative bacterial pathogens
In the last decade, there has been renewed focus in study-
ing the role of  various other bacterial strains in the aetio-
pathogenesis of  IBD as well. The role of  Fusobacterium 
was studied in mucosal biopsies of  patients with IBD 
and was found to be significant compared to controls in 
a number of  studies prior to this review period. More 
recently seropositivity to Fusobacterium varium (F. varium) 
infection was found to be higher in UC patients as op-
posed to controls with increased severity of  disease in 
seropositive UC patients[168]. Further study has revealed 
the ability of  F. varium to adhere to and invade colonic 

epithelial cells, increasing IL-8 and TNF-α secretion, 
providing a mechanism whereby F. varium infection may 
induce inflammation similar to that seen in IBD[169]. 

A similar association has also been found with Klebsi-
ella infection, with Anti-Klebsiella antibodies found more 
commonly in IBD patients than in controls with the bac-
teria being implicated in disease relapses[170]. Klebsiella pneu-
moniae has recently been shown to increase the severity of  
colitis in mouse models, increasing COX-2, IL-1β, IL-6 
and TNF-α expression and reducing tight junction asso-
ciated proteins[171]. Colitis has been shown to be induced 
even in wild type mice highlighting the high pathogenic 
potential of  this bacteria[172].

The role of  Salmonella infection has been postulated 
from numerous studies that have documented the risk 
of  developing IBD after acute Salmonella gastroenteri-
tis[130,140-142]. When searching for a mechanism it has been 
found that a Salmonella virulence factor, the invasion-
associated type Darfeuille-Michaud secretion system in-
duces inflammation by activation of  the NOD1/NOD2 
signalling pathways[173]. This ties Salmonella nicely to the 
growing body of  research into the genetics of  IBD, sup-
porting the role of  the pathogen.

The potential role of  Yersinia was proposed at the 
beginning of  the last decade based upon the observed 
parallel increase in IBD and refrigeration, “the cold chain 
hypothesis”[174]. Similarly to Salmonella and Campylobacter 
there has been evidence that acute Y. enterocolitica infec-
tion increases the short and long term risk of  developing 
IBD[175]. Despite some later successes in isolation Yersinia 
from IBD patients there has yet to be a compelling body 
of  evidence coupling the prevalence of  Yersinia with es-
tablished IBD[176-178].

MODULATION OF THE GUT MICROBIOTA 
AS A TREATMENT OPTION IN IBD 
PATIENTS
The past decade has seen rapid and definitive strides in 
determining distinct changes in the gut microbiota in 
patients with IBD. The effects seem to be global, involv-
ing not only the physical composition of  the principal 
components but also significantly altering their function. 
The role of  individual pathogens in this complex milieu 
still needs to be elucidated. The proof  of  concept of  
“dysbiosis” as an important step towards developing IBD 
needs to be proven with therapeutic trials attempting to 
reverse the process. 

Role of probiotics and prebiotics
Probiotics are beneficial microorganisms that, when in-
gested, may influence the gut microbiota composition, 
metabolic activity and immunomodulation to confer 
benefit to the host[179]. They can alter microbial diver-
sity through competitive inhibition of  other microbes, 
increase mucosal barrier function through the produc-
tion of  short chain fatty acids (SCFA) and interact with 
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intestinal DC to stimulate an anti-inflammatory re-
sponse[180-183]. These probiotic strains must be of  human 
origin, be non-pathogenic and have the intrinsic ability 
to survive the gastrointestinal transit in order to confer 
maximal benefit[184]. The most common probiotics used 
in the treatment of  IBD have been Lactobacillus sp, Bifido-
bacterium sp, Sacchromyces bouladrii, E. coli Nissle 1917 and 
the probiotic combination VSL#3[185-192]. The strongest 
indication for the use of  probiotics in IBD has been in 
the treatment of  pouchitis in the post-operative setting in 
UC patients[193]. E. coli Nissle 1917 and VSL#3 have been 
found to be effective in preventing relapse and inducing 
remission in this setting[194-197]. The data is not very robust 
with respect to the role of  probiotics maintaining remis-
sion in UC and a recent Cochrane Database System Re-
view has not recommended its use[198]. The current body 
of  evidence does not show any demonstrable benefit in 
patients with CD[199,200].

Prebiotics are non-digestible oligosaccharides that 
are selectively fermented in the colon into SCFAs and 
can alter microbial composition and activity and confer 
benefit to the host[201]. Examples include inulin, fruc-
tooligosaccharide (FOS), galactooligosaccharides and 
lactulose[202-207]. Prebiotics can selectively stimulate the 
growth of  certain probiotics such as Lactobacillus and 
Bifidobacterium, decrease intraluminal pH and increase 
the production of  SCFA, such as acetate and butyrate, 
which play an important role in epithelial and DC func-
tion[208,209]. SCFAs have also been found to have an anti-
inflammatory effect[210]. In an open labelled trial FOSuse 
decreased the disease activity index in patients with active 
CD and resulted in increased faecal Bifidobacterium, but 
this benefit was not demonstrated in a subsequent ran-
domized placebo controlled trial[206,207]. Another prebiotic 
inulin showed some promise in a randomized controlled 
trial in patients with UC and was also found to decrease 
inflammation in patients with pouchitis[203,204]. A couple 
of  studies have also found a potential role of  germinated 
barley foodstuff  in maintaining remission in patients with 
active UC[211,212]. Lastly, some benefit was also accrued 
with the use of  Ispaghula husk in patients with UC[213]. 
The important studies and their brief  outcomes are sum-
marized in Table 2.

Antibiotics
A couple of  recent meta-analyses on antibiotics in IBD 
found that the use of  antibiotics improved clinical out-
comes of  patients with IBD[214,215]. There is evidence that 
metronidazole and ciprofloxacin are useful in the treat-
ment of  CD and pouchitits[216,217]. Support for the use of  
antibiotics as the primary treatment in UC is less con-
vincing, however, there are some studies which suggest 
that rifaximin and ciprofloxacin could be useful as an ad-
junctive treatment for UC[214]. The mechanisms through 
which antibiotics are thought to benefit patients with 
CD are through the inhibition of  pathogenic bacteria or 
through reducing overall bacterial numbers. The main is-
sues with antibiotic treatment include lack of  understand-

ing of  which bacteria may be involved in the initiation 
of  inflammation, lack of  specificity and the potential for 
antibiotic resistance. There have been several trials in the 
past studying the specific role of  anti-mycobacterials in 
the treatment of  CD and this has been summarized in a 
European consensus document which has deemed the 
futility of  such treatment[218].

Faecal transplantation 
Faecal transplantation or faecal microbial therapy (FMT) 
as it is more commonly known is a technique in which 
stool is taken from a healthy surrogate and inserted into 
an unhealthy person, with curative intent[219]. The origins 
of  faecal transplantation as a method of  treating enteric 
pathology can be traced back for more than two millen-
nia, when it was used as a traditional Chinese medicine to 
treat diarrhoea[220]. 

In recent times, FMT is perhaps best known for its 
potential role in treating Clostridium difficile (C. difficile) 
infectious diarrhoea[221]. After donor-faeces infusion in a 
group of  patients infected with C. difficile, there was an 
alteration in the gut microflora with an increased faecal 
bacterial diversity, similar to that in healthy donors, with 
an increase in Bacteroidetes species and Clostridium clusters 
and a decrease in Proteobacteria species. This therapeu-
tic benefit by FMT as documented in this trial, would 
theoretically have a beneficial effect in patients with IBD 
as well. The use of  this form of  intervention is still re-
stricted to few exploratory trials. Donor faecal enemas 
were given to a group of  ten children over five days with 
moderate to severe UC and resulted in 78% clinical re-
sponse after a week and 67% with sustained response 
after a month in the nine children who could tolerate the 
treatment[222]. This was similarly documented in a subset 
of  six adult UC patients who were treated over a period 
of  5 d. Complete reversal of  symptoms was achieved in 
all patients by 4 mo, by which time all other UC medica-
tions had been ceased and at 1 to 13 years post FMT and 
without any UC medication, there was no clinical, colo-
noscopic, or histologic evidence of  UC in any patient[223]. 
However, a single infusion in six adult patients with se-
vere UC did not have a similar beneficial effect and the 
faecal microbiota changed to the donor phenotype in 
only 50% of  those treated, suggesting that as opposed to 
treatment of  C. difficile a prolonged treatment is indicated 
in IBD[224]. Although the data described above is cer-
tainly promising, there is clearly a need to move on from 
individual case reports and conduct more large scale 
randomised control trials before any benefit of  FMT can 
be claimed with any certainty. Some concerns have also 
been raised regarding safety and side effects, with some 
IBD patients suffering mild side effects following FMT, 
and the obvious issues surrounding potential transmis-
sion of  host infectious disease[225]. The efficacies of  dif-
ferent administration techniques and dosing regimens for 
FMT also need to be refined and investigated. Literature 
to date describes a range of  methods including colonos-
copy, duodenal or gastric tubes and self-administered 
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enema yet to date there is no clear evidence to support 
one method over any other. There is no doubt that ma-
nipulation of  the gut microbiota could have enormous 
therapeutic potential and FMT will play an important role 
in its future. 

CONCLUSION
The understanding of  the aetiopathogenesis of  IBD has 
undergone radical shifts in the past decade with the ad-
vent of  modern molecular techniques that can character-

ize the gut microbiome more accurately and host genom-
ic analysis that can explore the vast genetic universe of  
IBD. At the heart of  the inflammatory process in IBD is 
“dysbiosis” of  the gut microbiome, which may be driven 
by host genetics and environmental factors like diet. The 
next decade will help unravel the intricacies of  the host 
immune defences that determine this intriguing host-
microbiome ecology. The relationship of  the genotype 
of  the host and the extent to which it determines the 
composition of  the microbiome needs to be elucidated. 
It will open the doors to more “personalized” therapeutic 

Table 2  Probiotics and prebiotics in inflammatory bowel disease

Active component Study Design n Duration Intervention Result Reference

Lactobacillus CD remission RCT   98 6 mo Lactobacillus johnsonii LA1 4 × 
109 cfu/d

No difference [185]

IBD   40 1 mo Lactobacillus rhamnosus 
GR-1 and L. reuteri RC-14 

supplemented yogurt

Anti-inflammatory effects [186]

Bifidobacterium Active UC RCT   20 12 wk Bifido-fermented milk [B. breve, 
B. bifidum and acidophilus] (1 × 

1010) or placebo

Decreased clinical activity (P < 0.05) 
decreased endoscopic/histological 

scores (P < 0.01)

[187]

Active UC Open label   12 4 wk BGS 4.5 g/d Decrease in clinical activity index (P 
< 0.01) and endoscopic scores (P < 

0.05)

[188]

C57BL/6 mice Experimental   16 3 d B. bifidum S17 Decrease in microscopic 
inflammation and reduction in 

inflammatory cytokines

[189]

E. coli Nissle 1917 UC remission 327 12 mo 200 mg E. coli Nissle 1917 or 
1500 mg mesalazine/d

E. coli Nissle 1917 was equivalent 
to mesalazine in maintaining 

remission

[190]

VSL#3 UC remission Open label   34 6 wk VSL#3, 3.6 × 1012, bacteria/d ITT analysis demonstrated 
remission in 18/34 and response in 

8/34

[191]

Active UC RCT   29 12 mo VSL#3 450-1800 billion 
bacteria/d

Remission was achieved in 13/14 
VSL#3 and 4/15 placebo (P < 0.001)

[192]

Relapses within 1 yr of followup 
occurred in 3/14 VSL#3 and 11/15 

placebo
Endoscopic and histological score 
were significantly lower in VSL#3 

vs placebo (P < 0.05)
Inulin Active UC RCT   19 2 wk 3 g/d mesalazine and either 

12 g/d oligofructose-enriched 
inulin or placebo

Dyspeptic symptoms scale 
decreased significantly and an 

early reduction of calprotectin was 
observed in oligofructose-enriched 

inulin group

[203]

Pouchitis RCT   20 3 wk 24 g/d inulin or placebo Reduction in inflammation, increase 
butyrate conc and decreased 

inflammation associated factors

[204]

Inulin and FOS HLA-B27 rat 
model IBD

12 wk 8 g/kg body weight inulin or 
FOS

FOS increased Bifidobacterium spp. 
FOS and inulin reduced Clostridi-
um cluster XI and C. difficile toxin 
gene expression correlating with 
a reduction of chronic intestinal 

inflammation

[205]

FOS Active CD RCT 103 4 wk 15 g/d FOS or placebo No clinical benefit, despite impact-
ing on DC function

[206]

Active CD Open label   10 3 wk 15 g/d Significant reduction in Harvey 
Bradshaw index (P < 0.01) signifi-

cant increase in faecal bifidobacteria 
conc. (P < 0.001) and modifies DC 

function

[207]

CD: Crohn’s disease; UC: Ulcerative colitis; IBD: Inflammatory bowel disease; RCT: Randomized control trial; FOS: Fructooligosaccharides; E. coli: Esch-
erichia coli.
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interventions, which would encompass the host genotype 
and serotype, the disease phenotype, the gene expression 
profiles of  the immune cells and the microbiome compo-
sition to decide the best strategy for treating patients with 
IBD. This will usher in a paradigm shift in patient man-
agement with a move away from standard generic therapy 
to a scientific, tailored approach based on the needs of  
individual patients.
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